923 research outputs found

    Characterization of the Hamamatsu R11410-10 3-Inch Photomultiplier Tube for Liquid Xenon Dark Matter Direct Detection Experiments

    Get PDF
    To satisfy the requirements of the next generation of dark matter detectors based on the dual phase TPC, Hamamatsu, in close collaboration with UCLA, has developed the R11410-10 photomultipler tube. In this work, we present the detailed tests performed on this device. High QE (>30%) accompanied by a low dark count rate (50 Hz at 0.3 PE) and high gain (10^7) with good single PE resolution have been observed. A comprehensive screening measurement campaign is ongoing while the manufacturer quotes a radioactivity of 20 mBq/PMT. These characteristics show the R11410-10 to be particularly suitable for the forthcoming zero background liquid xenon detectors.Comment: 19 pages, 18 figure

    Suplatast Tosilate for Prophylaxis of Pediatric Atopy

    Get PDF

    Characterization of the QUartz Photon Intensifying Detector (QUPID) for Noble Liquid Detectors

    Full text link
    Dark Matter and Double Beta Decay experiments require extremely low radioactivity within the detector materials. For this purpose, the University of California, Los Angeles and Hamamatsu Photonics have developed the QUartz Photon Intensifying Detector (QUPID), an ultra-low background photodetector based on the Hybrid Avalanche Photo Diode (HAPD) and entirely made of ultraclean synthetic fused silica. In this work we present the basic concept of the QUPID and the testing measurements on QUPIDs from the first production line. Screening of radioactivity at the Gator facility in the Laboratori Nazionali del Gran Sasso has shown that the QUPIDs safely fulfill the low radioactive contamination requirements for the next generation zero background experiments set by Monte Carlo simulations. The quantum efficiency of the QUPID at room temperature is > 30% at the xenon scintillation wavelength. At low temperatures, the QUPID shows a leakage current less than 1 nA and a global gain of 10^5. In these conditions, the photocathode and the anode show > 95% linearity up to 1 uA for the cathode and 3 mA for the anode. The photocathode and collection efficiency are uniform to 80% over the entire surface. In parallel with single photon counting capabilities, the QUPIDs have a good timing response: 1.8 +/- 0.1 ns rise time, 2.5 +/- 0.2 ns fall time, 4.20 +/- 0.05 ns pulse width, and 160 +/- 30 ps transit time spread. The QUPIDs have also been tested in a liquid xenon environment, and scintillation light from 57Co and 210Po radioactive sources were observed.Comment: 15 pages, 22 figure

    Lepton Flavor Violation in the Two Higgs Doublet Model type III

    Get PDF
    We consider the Two Higgs Doublet Model (2HDM) of type III which leads to Flavour Changing Neutral Currents (FCNC) at tree level in the leptonic sector. In the framework of this model we can have, in principle, two situations: the case (a) when both doublets acquire a vacuum expectation value different from zero and the case (b) when only one of them is not zero. In addition, we show that we can make two types of rotations for the flavor mixing matrices which generates four types of lagrangians, with the rotation of type I we recover the case (b) from the case (a) in the limit tanβ\tan \beta \to \infty , and with the rotation of type II we obtain the case (b) from (a) in the limit tanβ0.\tan \beta \to 0. Moreover, two of the four possible lagrangians correspond to the models of types I and II plus Flavor Changing (FC) interactions. The analitical expressions of the partial lepton number violating widths Γ(μeee)\Gamma (\mu \to eee) and Γ(μeγ)\Gamma (\mu \to e\gamma) are derived for the cases (a) and (b) and both types of rotations. In all cases these widths go asymptotically to zero in the decoupling limit for all Higgses. We present from our analysis upper bounds for the flavour changing transition μe,\mu \to e, and we show that such bounds are sensitive to the VEV structure and the type of rotation utilized.Comment: 7 pages RevTeX4, 4 figures postscript, new section added and some new reference

    Studies of a three-stage dark matter and neutrino observatory based on multi-ton combinations of liquid xenon and liquid argon detectors

    Get PDF
    We study a three stage dark matter and neutrino observatory based on multi-ton two-phase liquid Xe and Ar detectors with sufficiently low backgrounds to be sensitive to WIMP dark matter interaction cross sections down to 10E-47 cm^2, and to provide both identification and two independent measurements of the WIMP mass through the use of the two target elements in a 5:1 mass ratio, giving an expected similarity of event numbers. The same detection systems will also allow measurement of the pp solar neutrino spectrum, the neutrino flux and temperature from a Galactic supernova, and neutrinoless double beta decay of 136Xe to the lifetime level of 10E27 - 10E28 y corresponding to the Majorana mass predicted from current neutrino oscillation data. The proposed scheme would be operated in three stages G2, G3, G4, beginning with fiducial masses 1-ton Xe + 5-ton Ar (G2), progressing to 10-ton Xe + 50-ton Ar (G3) then, dependent on results and performance of the latter, expandable to 100-ton Xe + 500-ton Ar (G4). This method of scale-up offers the advantage of utilizing the Ar vessel and ancillary systems of one stage for the Xe detector of the succeeding stage, requiring only one new detector vessel at each stage. Simulations show the feasibility of reducing or rejecting all external and internal background levels to a level <1 events per year for each succeeding mass level, by utilizing an increasing outer thickness of target material as self-shielding. The system would, with increasing mass scale, become increasingly sensitive to annual signal modulation, the agreement of Xe and Ar results confirming the Galactic origin of the signal. Dark matter sensitivities for spin-dependent and inelastic interactions are also included, and we conclude with a discussion of possible further gains from the use of Xe/Ar mixtures

    Monte-Carlo Simulation for an Aerogel Cherenkov Counter

    Get PDF
    We have developed a Monte-Carlo simulation code for an aerogel \v Cerenkov Counter which is operated under a strong magnetic field such as 1.5T. This code consists of two parts: photon transportation inside aerogel tiles, and one-dimensional amplification in a fine-mesh photomultiplier tube. It simulates the output photoelectron yields as accurately as 5% with only a single free parameter. This code is applied to simulations for a B-Factory particle-identification system.Comment: 40 pages, latex(article), 19 figure

    Rare Kaon Decays

    Get PDF
    The current status of rare kaon decay experiments is reviewed. New limits in the search for Lepton Flavor Violation are discussed, as are new measurements of the CKM matrix.Comment: 8 pages, 3 figures, LaTeX, presented at the 3rd International Conference on B Phyiscs and CP Violation, Taipei December 3-7, 199

    An Action-Based Approach to Presence: Foundations and Methods

    Get PDF
    This chapter presents an action-based approach to presence. It starts by briefly describing the theoretical and empirical foundations of this approach, formalized into three key notions of place/space, action and mediation. In the light of these notions, some common assumptions about presence are then questioned: assuming a neat distinction between virtual and real environments, taking for granted the contours of the mediated environment and considering presence as a purely personal state. Some possible research topics opened up by adopting action as a unit of analysis are illustrated. Finally, a case study on driving as a form of mediated presence is discussed, to provocatively illustrate the flexibility of this approach as a unified framework for presence in digital and physical environment

    First Dark Matter Results from the XENON100 Experiment

    Full text link
    The XENON100 experiment, in operation at the Laboratori Nazionali del Gran Sasso in Italy, is designed to search for dark matter WIMPs scattering off 62 kg of liquid xenon in an ultra-low background dual-phase time projection chamber. In this letter, we present first dark matter results from the analysis of 11.17 live days of non-blind data, acquired in October and November 2009. In the selected fiducial target of 40 kg, and within the pre-defined signal region, we observe no events and hence exclude spin-independent WIMP-nucleon elastic scattering cross-sections above 3.4 x 10^-44 cm^2 for 55 GeV/c^2 WIMPs at 90% confidence level. Below 20 GeV/c^2, this result constrains the interpretation of the CoGeNT and DAMA signals as being due to spin-independent, elastic, light mass WIMP interactions.Comment: 5 pages, 5 figures. Matches published versio
    corecore